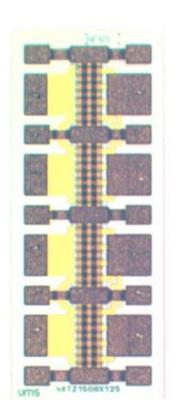


16W Power Transistor GaN HEMT on SiC

Description


The CHK8015-99F is a 16W Gallium Nitride High Electron Mobility Transistor. This product offers a general purpose and broadband solution for a variety of RF power applications.

The circuit is manufactured with a 0.25µm gate length GaN HEMT technology on SiC substrate.

It is proposed in a bare die form and requires an external matching circuitry.

Main Features

- Wide band capability up to 18GHz
- Pulsed and CW operating modes
- GaN technology: High Pout & High PAE
- DC bias: V_D=30V @I_{D Q}=200mA
- Chip size 0.88x2x0.1mm
- RoHS N°2011/65
- REACh N°1907/2006

Main Electrical Characteristics

 $T_{ref} = +25$ °C, CW mode, Freq = 9GHz, $V_{DS} = 30$ V, $I_{DQ} = 200$ mA

Symbol	Parameter	Min	Тур	Max	Unit
G _{SS}	Small Signal Gain		17		dB
P _{SAT}	Saturated Output Power		20		W
PAE	Max Power Added Efficiency		68		%
G _{PAE_MAX}	Associated Gain at Max PAE		11		dB

These values are deduced from elementary power cell performances

Ref.: DSCHK80156315 - 16 Nov 16

Specifications subject to change without notice

Recommended Operating Ratings

 $T_{ref} = +25^{\circ}C$

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage		-3.3		V	V_{DS} =30V, $I_{D_{Q}}$ =200mA
V _{DG_peak}	Drain-Gate Voltage		80		V	DC+RF
V _{GS_peak}	Gate-Source Voltage		-20		V	DC+RF
I_{D_Q}	Quiescent Drain Current		0.2	0.46	Α	V _{DS} =30V
I _{D_MAX}	Drain Current		1	(1)	А	V _{DS} =30V, Compressed mode
I _{G_MAX}	Gate Current in forward mode		0	16	mA	DC or Compressed mode
T _{j_MAX}	Junction temperature			200	°C	(1)

⁽¹⁾ Power dissipation must be considered

DC Characteristics

 $T_{ref} = +25^{\circ}C$

Symbol	Parameter	Min	Тур	Max	Unit	Conditions	
V _P	Pinch-Off Voltage	-4	-3.4	-2.8	V	$V_D = 10V, I_D = I_{DSS} / 100$	
I _{D_SAT}	Saturated Drain Current		3.6		Α	$^{(1)}$, $V_D=10V$, $V_G=1V$	
I _{G_leak}	Gate Leakage Current	-0.8			mA	$V_D=50V$, $V_G=-7V$	
V_{BDG}	Drain-Gate Break-down Voltage		120		٧	V _G =-7V, I _D =20mA	
R _{TH}	Thermal Resistance		6		°C/W	CW mode, T _{ref} =75°C, ⁽²⁾	

 $^{^{(1)}}$ For information, limited by $I_{D_MAX}\,,$ see on ROR & AMR

RF Characteristics

 T_{ref} = +25°C, CW mode, Freq = 9GHz, V_{DS} = 30V, $I_{D_{-}Q}$ = 200mA

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
G _{SS}	Small Signal Gain		17		dB	
P _{SAT}	Saturated Output Power		20		W	
PAE	Max Power Added Efficiency		68		%	
G _{PAE_MAX}	Associated Gain at Max PAE		11		dB	

These values are deduced from elementary power cell performances

⁽²⁾ The thermal resistance is given for the power bar mounted on carrier plate (20μm Au/Sn soldering + 1.4mm Cu/Mo/Cu). The reference temperature is defined on the carrier back side. Thermal analysis is highly recommended, more details are available on request.

Absolute Maximum Ratings

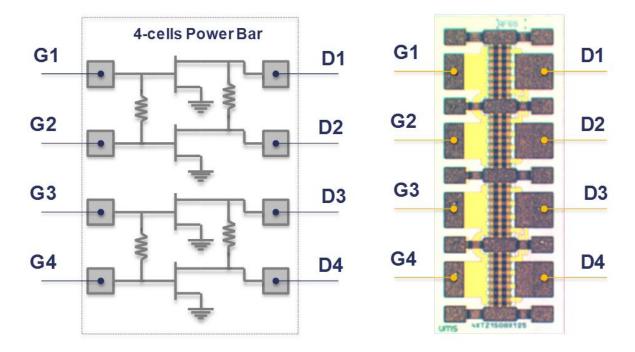
 $T_{ref} = +25^{\circ}C^{(1)} (2) (3)$

Symbol	Parameter	Rating	Unit	Note
V_{DS_Q}	Drain-Source Biasing Voltage	55	V	
V_{GS_Q}	Gate-Source Biasing Voltage	-10, +2	V	
V _{DG_peak}	Drain-Gate Voltage (DC+RF)	120	V	
V _{GS_peak}	Gate-Source Voltage (DC+RF)	-25	V	
I _{G_MAX}	Maximum Gate Current	32	mA	
I _{G_MIN}	Minimum Gate Current	-2	mA	
I _{D_MAX}	Maximum Drain Current	See note	Α	(4)
P _{IN}	Maximum Input Power	See note	dBm	(5)
T _j	Maximum Junction Temperature	230	°C	
T _{STG}	Storage Temperature	-55 to +150	°C	
T _{Case}	Case Operating Temperature	See note	°C	(4)

⁽¹⁾ Operation of this device above anyone of these parameters may cause permanent damage.

⁽²⁾ Duration < 1s.

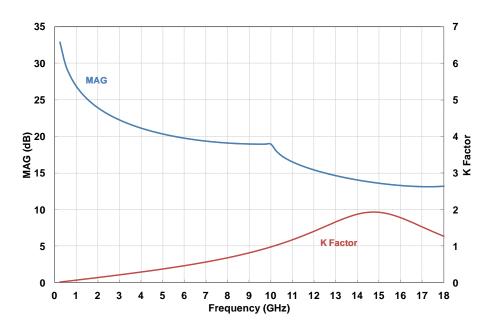
⁽³⁾ The given values must not be exceeded at the same time even momentarily for any parameter, since each parameter is independent from each other, otherwise deterioration or destruction of the device may take place.

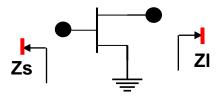

⁽⁴⁾ Max junction temperature must be considered

⁽⁵⁾ Linked to and limited by Ig_max & Ig_min values. Maximum input power depends on frequency and should not exceed 2dB above PAE_max.

Power Bar Description

The device is composed of 4 elementary 4W cells. These cells are connected together with a specific network providing a good trade-off between performance and stability (resistance between gates and drains as described on the schematic). The reference plans are on the center of the bonding pads.


A multiport non-linear model is available on request.


Elementary Cell Maximum Gain & Stability Characteristics

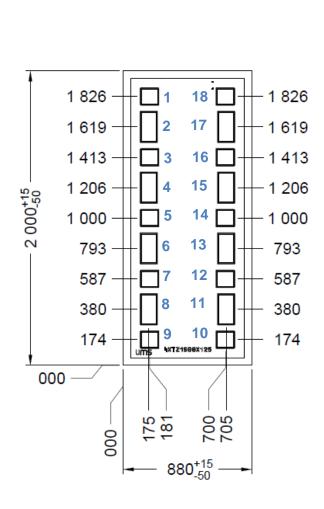
 T_{ref} = +25°C, V_{DS} = +30V, $I_{D_{-}Q}$ = 50mA, simulated results

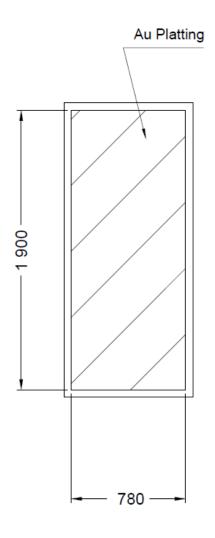
Elementary Cell Load Pull Performances

 T_{ref} = +25°C, V_{DS} = +30V, $I_{D_{-}Q}$ = 50mA, simulated results

The impedances are chosen as a trade-off between Output Power, PAE and Stability of the device. Second harmonic of output load has been tuned.

These values are given in the bonding pads reference plan.


Frequency (GHz)	Zs	ZI	Gain (dB) @PAE _{max}	PAE _{max} (%)	Pout (W) @PAE _{max}	Pout _{max} (W)
3	15 + j18	60 + j65	12.8	72	4.9	5.3
6	8.2 + j14.8	24.8 + j51.7	12.4	69	4.4	5
9	2.8 + j6.4	11.7 + j33.7	10.8	68	4.7	5.1
12	2.1 + j3.5	8 + j24	10	52	3.8	4.8
15	1.87 + j0	5 + j17.3	8.6	50	3.6	4.7
18	1.7 – j3.1	4 + j12.7	7.6	46	3.6	4.8



Mechanical data

TOP VIEW

BOTTOM VIEW

UNITS : μm

Chip thickness: 100μm +/- 10 μm All dimensions are in micrometers

GND pads $(1, 3, 5, 7, 9, 10, 12, 14, 16, 18) = 99x130\mu m^2$

DC Gate pads $(2, 4, 6, 8) = 214 \times 120 \mu m^2$

DC Drain pads $(11, 13, 15, 17) = 214 \times 120 \mu m^2$

16W Power Transistor

CHK8015-99F

Notes

Qualification domain

This part is qualified according to UMS standards, excluding humid environment.

User guide for MMIC storage, pick & place, die attach, wire bonding

Refer to the application note AN0001 available at http://www.ums-gaas.com for general recommendations on chip handling.

Recommended environmental management

UMS products are compliant with the regulation in particular with the directives RoHS N°2011/65 and REACh N°1907/2006. More environmental data are available in the application note AN0019 also available at http://www.ums-gaas.com.

Recommended ESD management

Refer to the application note AN0020 available at http://www.ums-gaas.com for ESD sensitivity and handling recommendations for the UMS package products.

User guide GaN Power Bars Assembly guide lines

Refer to the application note AN0026 available at http://www.ums-gaas.com for general recommendations on SiC Transistor handling and assembly.

Ordering Information

Chip form: CHK8015-99F/00

Information furnished is believed to be accurate and reliable. However **United Monolithic Semiconductors S.A.S.** assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of **United Monolithic Semiconductors S.A.S.**. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. **United Monolithic Semiconductors S.A.S.** products are not authorised for use as critical components in life support devices or systems without express written approval from **United Monolithic Semiconductors S.A.S.**

