

PRELIMINARY DATASHEET

CGY2124UH/C1

X-Band 8-12 GHz Low Noise Amplifier

DESCRIPTION

The CGY2124UH/C1 is a high performance GaAs single supply Low Noise Amplifier MMIC designed to operate in the X band.

The CGY2124UH/C1 has an ultra-low noise figure of 1.1 dB with minimum 32 dB of Gain. The on chip matching provides better than 12 dB of Input and Output Return Loss. It can be used in Radar, Telecommunication and Instrumentation applications.

The die is manufactured using OMMIC's 0.13 μ m gate length PHEMT Technology. The MMIC uses gold bonding pads and backside metallization and is fully protected with Silicon Nitride passivation to obtain the highest level of reliability.

This technology has been evaluated for Space applications and is on the European Preferred Parts List of the European Space Agency.

APPLICATIONS

- Radar
- Telecommunications
- Instrumentation

Revision: 27/02/2014

Website: www.ommic.com

RoHS Compliant

FEATURES

Operating Range : 8 GHz to 12 GHz

Single supply architecture

Noise Figure : 1.1 dB

▶ Gain > 32 dB

▶ Gain Flatness: +/- 0.8dB

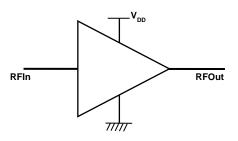
▶ Output P_{1dB}: 10 dBm

▶ OIP3 : 20dBm

Input Return Loss: 12 dB

Output Return Loss: 12 dB

Power supply : 55 mA @ 5 V


Chip size = 2.4 mm x 1.56 mm

Device Availability (Q1 2013) :

Tested, Inspected Known Good Die (KGD)

Demonstration Boards

Space and MIL-STD MMICs

CGY2124UH/C1 block diagram

OMMIC

2/8

MAXIMUM VALUES

 $T_{amb} = +25 \, ^{\circ}C$

Symbol	Parameter	Conditions	MIN.	MAX.	UNIT
V _{dd}	Drain voltage		0	+ 6	V
Idd	Drain current			100	mA
Pin	RF Input power			+ 10	dBm
T _{amb}	Ambient temperature		- 55	+ 85	° C
Tj	Junction temperature			+ 150	° C
T _{stg}	Storage temperature		- 55	+ 150	° C

Operation of this device outside the parameter ranges given above may cause permanent damage

THERMAL CHARACTERISTICS

Symbol	Parameter		UNIT
Rth (j - amb)	Thermal resistance from junction to ambient (DC power at Tamb max)	TBD	° C/W

ELECTRICAL CHARACTERISTICS

 $T_{amb} = +25$ °C, $V_{dd} = 5V$

Symbol	Parameter	Conditions	MIN.	TYP.	MAX.	UNIT
RFin	Input frequency		8		12	GHz
Performanc	es of the die	·				
V_{DD}	Drain Supply Voltage			+ 5		V
I _{DD}	Drain Supply Current		45	55		mA
G	Gain		32	33	34	dB
NF	Noise Figure			1.1	1.3	dB
P1dB*	1dB compression point			10		dBm
OIP3	Output third order intercept point		19	20	21.2	dBm
ISO _{rev}	Reverse Isolation	RFOUT/RFIN	-50	-55		dB
S ₁₁	Input reflection coefficient	50 Ohms		-12		dB
S ₂₂	Output reflection coefficient	50 Ohms		-12		dB

^(*) Measurement reference planes are the INPUT and OUTPUT plans of the CGY2124UH/C1 MMIC

Website: www.ommic.com

Caution: This device is a high performance RF component and can be damaged by inappropriate handling. Standard ESD precautions should be followed. OMMIC document "OM-CI-MV/ 001/ PG" contains more information on the precautions to take.

3/8

S-PARAMETERS

Measured at 25°C, VDD = 5V ID = 55mA

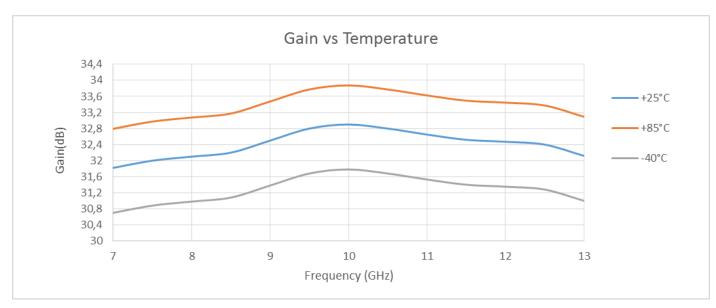


Figure 1 gain wrt frequency

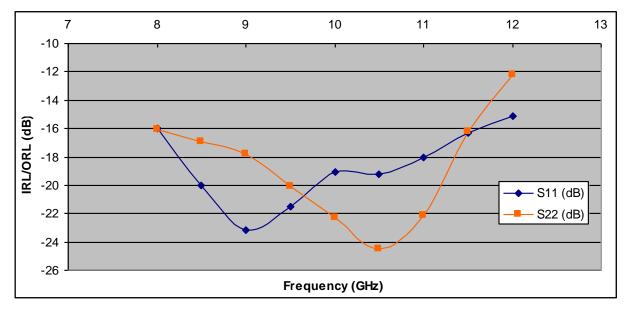
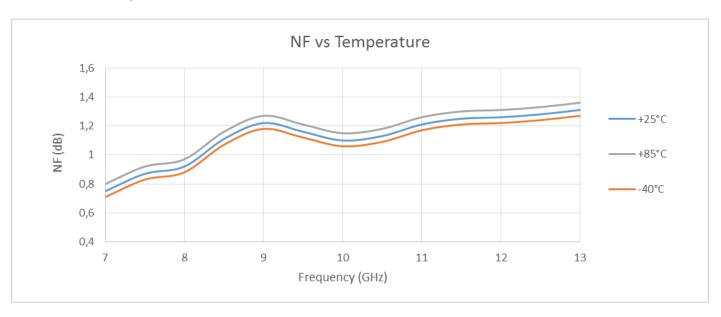


Figure 2 Return loss wrt frequency


NOISE FIGURE

e-mail: information@ommic.com

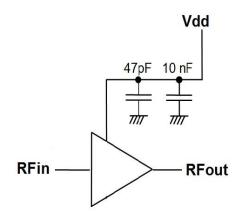
4/8

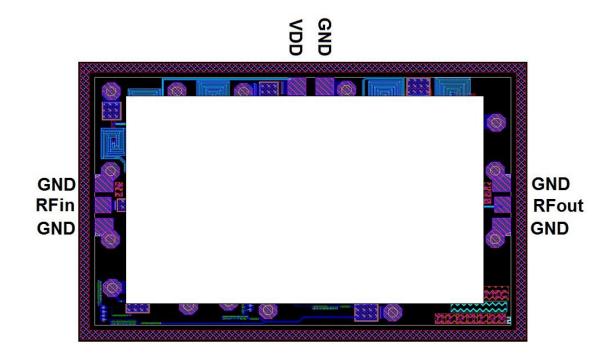
Measured noise figure at 25°C, VDD = 5V, ID = 55mA

APPLICATION SCHEMATIC

Website: www.ommic.com

To prevent instability of the customer design it is highly recommended to place small chip capacitors as near as possible to the CGY2124UH/C1 die and to connect them with bonding as short as possible. Additionally, a 10nF capacitor can be added on a drain connection to insure low frequency decoupling, the power supply decoupling could be complemented with 1 uF capacitors.




Figure 3 : Application schematics

Component NAME	Value	Туре	Comment
47pF capacitor	47pF	Chip	PRESIDIO COMPONENTS P/N SA151BX470M2HX5#013B
10nF capacitor	10nF	Chip	MURATA GM260X7R103M16M100PM520

Components reference

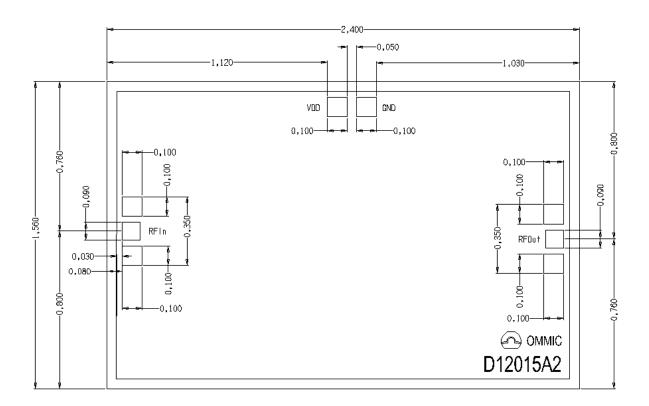
5/8

DIE LAYOUT AND PIN CONFIGURATION

PINOUT

Symbol	Pad	Description	
RFOUT	OUT	RF output	
RFIN	IN	RF input	
VDD	VDD	Single Supply Pad	
GND	BACKSIDE	Ground	

Note:


Website: www.ommic.com

In order to ensure good RF performances and stability It is key to connected to the ground the pad available on the backside of the die.

e-mail: information@ommic.com

6/8

MECANICAL INFORMATIONS

PAD COORDINATES

Website: www.ommic.com

CVMPOL	PAD COORDINATES		PAD SIZE	DESCRIPTION	
SYMBOL	Х	Y	PAD SIZE	DESCRIPTION	
VDD	1170	1430	100 x 100		
GND	1320	1430	100 x 100		
RF In GND N	130	925	100 x 100	RF In Ground North	
RF In	125	800	90 x 90	RF In Signal - spacing to GND pad 30	
RF In GND S	130	675	100 x 100	RF In Ground South	
RF Out GND N	2270	635	100 x 100	RF Out Ground North	
RF Out	2275	760	90 x 90	RF Out Signal - spacing to GND pad 30	
RF Out GND S	2270	885	100 x 100	RF Out Ground South	

7/8

PACKAGE

Туре	Description	Terminals	Pitch (mm)	Package size (mm)
DIE	100% RF and DC on-wafer tested	3	-	2.4 x 1.56 x 0.1

ORDERING INFORMATION

Generic type	Package type	Version	Sort Type	Description
CGY2124	UH	C1	-	On-Wafer measured Die

SOLDERING

To avoid permanent damages or impact on reliability during soldering process, die temperature should never exceed 300°C.

Temperature in excess of 300°C should not be applied to the die longer than 1mn Toxic fumes will be generated at temperatures higher than 400°C.

Website: www.ommic.com

e-mail: information@ommic.com

e-mail: information@ommic.com

8/8

DEFINITIONS

Limiting values definition

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Applications that are described herein for any of these products are for illustrative purposes only. OMMIC makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. OMMIC's customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify OMMIC for any damages resulting from such application.

Right to make changes

OMMIC reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. OMMIC assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.