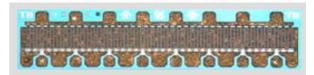


5W High Linearity and High Efficiency GaAs Power FETs

FEATURES

- 5W Typical Power at 6 GHz
- Linear Power Gain: $G_L = 10 \text{ dB Typical at 6 GHz}$
- High Linearity: IP3 = 47 dBm Typical at 6 GHz
- Via Holes Source Ground
- Suitable for High Reliability Application
- Breakdown Voltage: BV_{DGO} ≥ 18 V
- Lg = $0.6 \mu m$, Wg = 12 mm
- High Power Added Efficiency: Nominal PAE of 40 % at 6 GHz
- Tight Vp ranges control
- High RF input power handling capability
- 100 % DC Tested

DESCRIPTION


The TC1806 is a GaAs Pseudomorphic High Electron Mobility Transistor (PHEMT) which has high linearity and high Power Added Efficiency. The device is processed with a propriety via-hole process, which provides low thermal resistance and low inductance. The long gate length makes the device to have high breakdown voltage. All devices are 100% DC tested to assure consistent quality. Bond pads are gold plated for either thermo-compression or thermo-sonic wire bonding. Backside gold plating is compatible with standard AuSn die-attach. Typical application include commercial and military high performance power amplifiers.

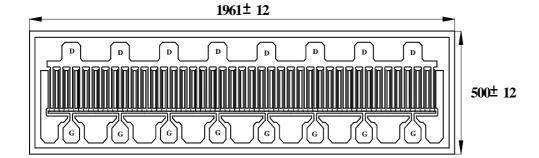
ELECTRICAL SPECIFICATIONS (T_A=25 °C)

Symbol	Conditions	MIN	TYP	MAX	UNIT
P_{1dB}	Output Power at 1dB Gain Compression Point, $f = 6$ GHz $V_{DS} = 8$ V, $I_{DS} = 1200$ mA	36	36.5		dBm
G_L	Linear Power Gain, $f = 6$ GHz $V_{DS} = 8$ V, $I_{DS} = 1200$ mA	9	10		dB
IP3	Intercept Point of the 3^{rd} -order Intermodulation, $f = 6$ GHz $V_{DS} = 8V$, $I_{DS} = 1200$ mA, $*P_{SCL} = 23$ dBm		47		dBm
PAE	Power Added Efficiency at 1dB Compression Power, $f = 6$ GHz		40		%
I_{DSS}	Saturated Drain-Source Current at $V_{DS} = 2 \text{ V}$, $V_{GS} = 0 \text{ V}$		3		A
$g_{\rm m}$	Transconductance at $V_{DS} = 2 \text{ V}$, $V_{GS} = 0 \text{ V}$		2000		mS
V_{P}	Pinch-off Voltage at $V_{DS} = 2 \text{ V}$, $I_D = 24 \text{ mA}$		-1.7**		Volts
BV_{DGO}	Drain-Gate Breakdown Voltage at I _{DGO} = 6 mA	18	22		Volts
R_{th}	Thermal Resistance		2		°C/W

(1) TC1806P1519 : Vp = -1.5V to -1.9V (2) TC1806P1620 : Vp = -1.6V to -2.0V (3) TC1806P1721 : Vp = -1.7V to -2.1V In addition, the customers may specify their requirements.

PHOTO ENLARGEMENT

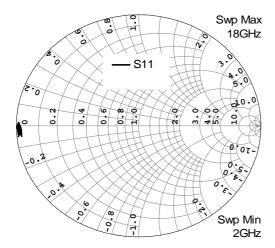
^{*} P_{SCL}: Output Power of Single Carrier Level.

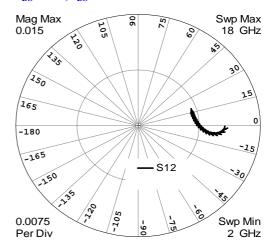

^{* *}For the tight control of the pinch-off voltage . TC1806's are divided into 3 groups:

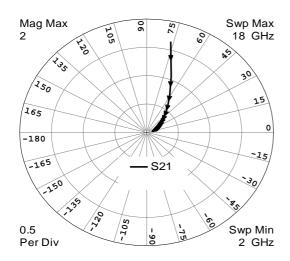
ABSOLUTE MAXIMUM RATINGS (T_A=25 °C)

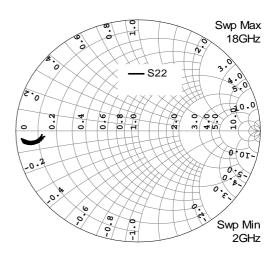
Symbol	Parameter	Rating
V_{DS}	Drain-Source Voltage	12 V
V_{GS}	Gate-Source Voltage	-5 V
I_{DS}	Drain Current	I_{DSS}
P_{in}	RF Input Power, CW	33 dBm
P_{T}	Continuous Dissipation	12 W
T_{CH}	Channel Temperature	175 °C
T_{STG}	Storage Temperature	- 65 °C to +175 °C

CHIP DIMENSIONS

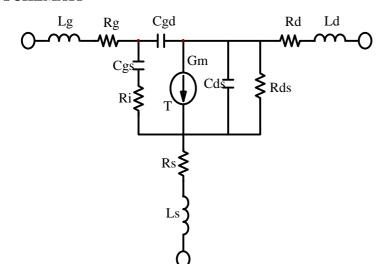



Units: Micrometers Chip Thickness: 50 Gate Pad: 76.0 x 59.5


Drain Pad: 86.0 x 76.0



TYPICAL SCATTERING PARAMETERS $(T_A=25~^{\circ}C)$ $V_{DS}=8~V, I_{DS}=1200~mA$


FREQUENCY	ENCY S11 S21		521	S12		S22		
(GHz)	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2	0.9738	-175.53	1.6351	76.59	0.0107	-2.09	0.7913	-175.80
3	0.9746	-177.12	1.0563	68.50	0.0104	-4.49	0.8063	-174.74
4	0.9754	-177.96	0.7606	61.30	0.0100	-5.99	0.8237	-173.94
5	0.9764	-178.52	0.5805	54.82	0.0095	-6.75	0.8416	-173.45
6	0.9773	-178.94	0.4597	49.01	0.0091	-6.82	0.8588	-173.23
7	0.9781	-179.27	0.3739	43.79	0.0087	-6.29	0.8745	-173.19
8	0.9789	-179.57	0.3103	39.12	0.0083	-5.21	0.8885	-173.29
9	0.9796	-179.83	0.2619	34.92	0.0080	-3.67	0.9006	-173.47
10	0.9802	179.94	0.2242	31.16	0.0077	-1.75	0.9111	-173.71
11	0.9807	179.71	0.1942	27.76	0.0074	0.49	0.9201	-173.97
12	0.9811	179.50	0.1701	24.68	0.0072	2.95	0.9278	-174.25
13	0.9815	179.30	0.1504	21.89	0.0071	5.58	0.9345	-174.53
14	0.9818	179.11	0.1341	19.35	0.0070	8.31	0.9401	-174.80
15	0.9821	178.93	0.1205	17.02	0.0069	11.09	0.9451	-175.06
16	0.9823	178.75	0.1091	14.89	0.0069	13.87	0.9493	-175.32
17	0.9826	178.57	0.0993	12.92	0.0069	16.62	0.9530	-175.56
18	0.9827	178.40	0.0909	11.11	0.0069	19.31	0.9562	-175.79

^{*} The data does not include gate and drain bond wires.

TRANSCOM, INC., 90 Dasoong 7th Road, Tainan Science-Based Industrial Park, Hsin-She Shiang, Tainan County, Taiwan, R.O.C. Web-Site: www.transcominc.com.tw
Phone: 886-6-505086
Fax: 886-6-5051602

SMALL SIGNAL MODEL, $V_{DS} = 8 \text{ V}$, $I_{DS} = 1200 \text{ mA}$ SCHEMATI

PARAMETERS

Lg	0.008 nH	Rs	0.106 Ohm
Rg	0.093 Ohm	Ls	0.001 nH
Cgs	22.9 pF	Cds	2.977 pF
Ri	0.185 Ohm	Rds	11.9 Ohm
Cgd	0.803 pF	Rd	0.14 Ohm
Gm	2335 mS	Ld	0.0014 nH
T	3.9 psec		

CHIP HANDLING

DIE ATTACHMENT: Conductive epoxy or eutectic die attach is recommended. Eutectic die attach can be accomplished with Au-Sn (80% Au-20% Sn) perform at stage temperature: 290°C ± 5°C; Handling Tool: Tweezers; Time: less than 1min.

WIRE BONDING: The recommended wire bond method is thermocompression bonding with 0.7 to 1.0 mil (0.018 to 0.025 mm) gold wire. Stage temperature: 220°C to 250°C; Bond Tip Temperature: 150°C; Bond Force: 20 to 30 gms depending on size of wire and Bond Tip Temperature.

HANDLING PRECAUTIONS: The user must operate in a clean, dry environment. Care should be exercised during handling avoid damage to the devices. Electrostatic Discharge (ESD) precautions should be observed at all stages of storage, handling, assembly, and testing. The static discharge must be less than 300V.

TRANSCOM, INC., 90 Dasoong 7th Road, Tainan Science-Based Industrial Park, Hsin-She Shiang, Tainan County, Taiwan, R.O.C. Web-Site: www.transcominc.com.tw
Phone: 886-6-505086
Fax: 886-6-5051602