

# PRODUCT DATASHEET

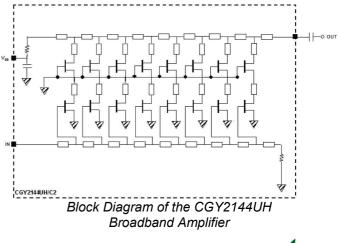
# CGY2144UH/C2

# **DC-54GHz, Medium Gain Broadband Amplifier**

#### DESCRIPTION

The CGY2144UH/C2 is a broadband distributed amplifier designed especially for OC-768 (43 Gb/s) based fiber optic networks. The amplifier can be used as a Transimpedance Amplifier (TIA) or either as a driver amplifier for Electro-Absorption Modulator (EAM). The CGY2144UH/C2 can also be used as a flexible multi-purpose gain block.

The CGY2144UH/C2 features single ended RF input and output and operates with a power consumption of typically 500 mW. It requires only a single +5.0 V via on-chip bias network and a minimum number of external components.


The MMIC is manufactured using OMMIC's qualified 0.13  $\mu$ m PHEMT GaAs D01PH technology. The D01PH process is one of the European Space Agency (ESA) european preferred part list (EPPL) technologies.

#### **APPLICATIONS**

- 43 Gb/s OC-768 Receiver
- 43 Gb/s OC-768 EAM Driver
- Instrumentation, EW Systems
- General purpose wide band amplifier

#### **FEATURES**

- Wide frequency range : DC 54 GHz
- Suitable for 43 Gb/s optical fibre links
- Gain S21 : 13 dB
- Fast rise/fall time < 10 ps</p>
- Low noise figure: typical 2.5 dB @ 20 GHz
- Transimpedance gain : 280  $\Omega$ , (49 dB $\Omega$ )
- Input current density : 10 pA/Hz<sup>1/2</sup> @ 30 GHz
- Overload > 3.5 mApp
- Low group delay variation: ±7 ps @ 25 GHz
- Single positive supply voltage +5.0 V
- Chip size = 1490 x 2170 μm
- Tested, Inspected Known Good Die (KGD)
- Samples Available
- Space and MIL-STD Available







# CGY2144UH/C2

2/12

#### LIMITING VALUES

Tamb = 25 °C unless otherwise noted

| Symbol           | Parameter            | Conditions | MIN. | MAX. | UNIT |
|------------------|----------------------|------------|------|------|------|
| V <sub>DD</sub>  | Supply voltage       |            | -0.5 | +8   | V    |
| I <sub>DD</sub>  | Supply current       |            |      | 150  | mA   |
| T <sub>stg</sub> | Storage temperature  |            | -55  | +150 | °C   |
| Tj               | Junction temperature |            |      | +150 | °C   |

#### THERMAL CHARACTERISTICS

| Symbol               | Parameter                                                             | Value | UNIT  |
|----------------------|-----------------------------------------------------------------------|-------|-------|
| R <sub>th(j-a)</sub> | Thermal resistance from junction to ambient ( $T_a = 25 \text{ °C}$ ) | TBD   | ° C/W |

#### **OPERATING CONDITIONS**

| Symbol           | Parameter                                                                                    | Conditions | MIN.  | TYP. | MAX.  | UNIT |
|------------------|----------------------------------------------------------------------------------------------|------------|-------|------|-------|------|
| V <sub>DD</sub>  | Supply voltage                                                                               |            | +4.75 | +5   | +5.25 | V    |
| T <sub>op</sub>  | p Operating ambient temperature                                                              |            | -10   |      | +85   | °C   |
| Input interface  | DC coupled in a TIA configuration ;<br>All other cases : AC coupled via an external DC block |            |       |      |       |      |
| Output interface | Must be AC coupled via an external DC block                                                  |            |       |      |       |      |

#### **DC CHARACTERISTICS**

 $T_{amb}$  = 25 °C,  $V_{DD}$  = 5 V, unless otherwise specified.

| Symbol          | Parameter               | Conditions | MIN. | TYP. | MAX. | UNIT |
|-----------------|-------------------------|------------|------|------|------|------|
| I <sub>DD</sub> | Total supply current    |            |      | 100  | 150  | mA   |
| P <sub>DC</sub> | DC power consumption    |            |      | 500  | 750  | mW   |
| VINDC           | DC input voltage        | see note 1 |      | 0    |      | V    |
| VOUTDC          | DC output voltage level | see note 2 | +2.2 | +2.8 | +3.7 | V    |

#### NOTE

- 1-  $V_{INDC}$  : DC voltage available at the input of the TIA.
- 2-  $V_{OUTDC}$ : DC voltage available at the output of the TIA.



**Caution :** This device is a high performance RF component and can be damaged by inappropriate handling. Standard ESD precautions should be followed. OMMIC document "OM-CI-MV/ 001/ PG" contains more information on the precautions to take.



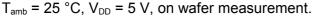
### CGY2144UH/C2

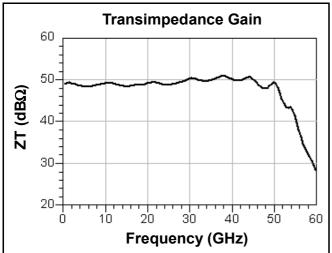
3/12

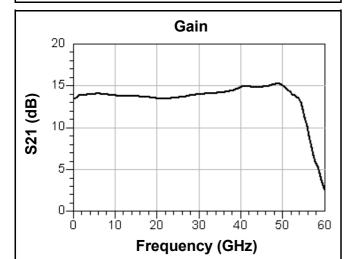
#### AC CHARACTERISTICS

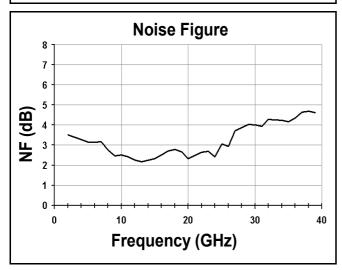
 $T_{amb}$  = 25 °C,  $V_{DD}$  = 5 V,  $R_L$  = 50  $\Omega$ . The S-parameters of the amplifier are measured on-wafer using RF probes. When the amplifier is treated as a TIA, the following parameters are assumed : Photodiode and input parasitics capacitance  $C_{PH}$  = 50 fF, total photodiode bonding inductance  $L_{PH}$  = 0.3 nH,  $R_{PH}$  = 15 $\Omega$ ; unless otherwise stated.

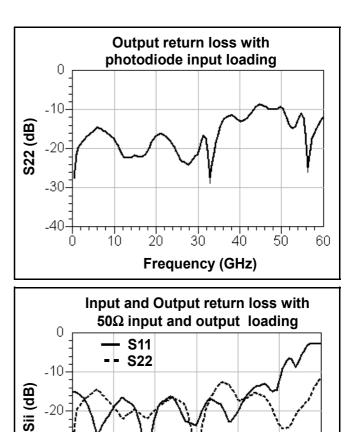
| Symbol                                                  | Parameter                                                        | Conditions                   | MIN. | TYP.                  | MAX. | UNIT                 |
|---------------------------------------------------------|------------------------------------------------------------------|------------------------------|------|-----------------------|------|----------------------|
| Rate                                                    | Data rate                                                        | NRZ                          | 43   |                       |      | Gb/s                 |
| S21                                                     | Reference Gain                                                   | F = 500 MHz - See note 1     | 11   | 13                    |      | dB                   |
| Fc                                                      | High frequency cut-off                                           | S21 <sub>500MHz</sub> – 3dB  | 45   | 54                    |      | GHz                  |
| Gain                                                    |                                                                  | F = 500 MHz to 35 GHz        |      | ±0.5                  | ±1   | dB                   |
| ripple                                                  |                                                                  | $F = 35 \text{ GHz to } F_c$ | -3   | 1                     | 3    | dB                   |
| NF                                                      | Noise Figure                                                     | F = 10 GHz                   |      | 3                     |      | dB                   |
|                                                         |                                                                  | F = 20 GHz                   |      | 2.5                   |      | dB                   |
|                                                         |                                                                  | F = 30 GHz                   |      | 4                     |      | dB                   |
| S11                                                     | Input return loss                                                | F = 500 MHz to 45 GHz        |      | -13                   | -10  | dB                   |
| 511                                                     |                                                                  | F = 45 GHz to 50 GHz         |      | -11                   | -7   | dB                   |
| ຣາາ                                                     |                                                                  | F = 500 MHz to 35 GHz        |      | -13                   | -10  | dB                   |
| S22 Output return loss                                  |                                                                  | F = 35 GHz to 50 GHz         |      | -12                   | -7   | dB                   |
|                                                         | Output return loss                                               | F = 500 MHz to 35 GHz        |      | -13                   | -10  | dB                   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |                                                                  | F = 35 GHz to 50 GHz         |      | -11                   | -7   | dB                   |
| J                                                       | Jitter                                                           | See note 2                   |      |                       | 1.0  | ps-rms               |
| t <sub>R</sub> /t <sub>F</sub>                          | Rise/Fall time                                                   | 20%-80% - See note 2         |      |                       | 10   | ps                   |
| F <sub>c_low</sub>                                      | Low frequency cut-off                                            | AC coupled - See note 3      |      |                       | 50   | KHz                  |
| Z⊺  <sub>l</sub>                                        | Low frequency transimpedance gain                                | F = 500 MHz - See note 1     | 45   | 49                    |      | dBΩ                  |
| F <sub>C_ZT</sub>                                       | Transimpedance high<br>frequency cut-off                         | Z⊤  <sub>LF</sub> -3 dB      | 45   | 50                    |      | GHz                  |
| A 1 <b>7</b> 1                                          |                                                                  | F = 500 MHz to 35 GHz        |      | ±1                    | ±1.5 | dBΩ                  |
| $\Delta  Z_T $                                          | Transimpedance ripple                                            | F = 35 GHz to $F_{C_{ZT}}$   | -3   | 1                     | 3    | dBΩ                  |
| $F_{C_{low}}$                                           | Low frequency cut-off                                            | AC coupled - See note 3      |      |                       | 50   | KHz                  |
|                                                         |                                                                  | F = 3 GHz to 33 GHz          |      | ±7                    | ±9   | ps                   |
| $dT_{G}$                                                | Group delay, relative to $Z_T$                                   | F = 33 GHz to 40 GHz         | -6   |                       | +25  | ps                   |
| I <sub>PKMAX</sub>                                      | Maximum peak input current before input overload                 |                              | 3.5  |                       |      | mAp-p                |
| l <sub>eq</sub>                                         | Equivalent input noise current                                   | F = 3 GHz to 36 GHz          |      | 6≤l <sub>eq</sub> ≤15 |      | pA/Hz <sup>1/2</sup> |
| К                                                       | Microwave stability factor.<br>T <sub>amb</sub> = -10°C to +85°C | All passive source and loads | 1.1  |                       |      |                      |


#### NOTE


- 1- Measurement is guaranteed down to the lower frequency cut-off. 500 MHz is specified as a reference for convenience of measurement.
- 2- Measurement impacted by input signal, cable losses, probes and connectors.
- 3- The low frequency cut-off is set by the choice of the input/output blocking capacitor.





4/12


#### MEASURED PERFORMANCE











Measured transimpedance gain and output return loss for an input loading conditions : photodiode elements :

30

Frequency (GHz)

40

50

60

 $C_{PH}$  = 50 fF,  $L_{PH}$  = 0.3 nH,  $R_{PH}$  = 15  $\Omega$ .

20

Measured gain (S21) and input/output return loss for an input/output loading conditions :  $50\Omega$ .

-20

-30

-40

n

10



#### CGY2144UH/C2

5/12

#### CGY2144UH/C2 TYPICAL SCATTERING PARAMETERS

 $T_{amb}$  = 25°C, Vdd = +5.0 V, R<sub>L</sub> = 50  $\Omega$ .

| Frequency<br>(GHz) | Mag S11 | Ang S11 (°) | Mag S21 | Ang S21 (°) | Mag S12 | Ang S12 (°) | Mag (S22) | Ang S22 (°) |
|--------------------|---------|-------------|---------|-------------|---------|-------------|-----------|-------------|
| 0.3                | 0.175   | -4.1        | 4.688   | 175.7       | 0.0007  | 178.7       | 0.044     | 129.5       |
| 0.5                | 0.177   | -6.1        | 4.715   | 173.4       | 0.0003  | -119.3      | 0.060     | 106.8       |
| 0.7                | 0.173   | -8.5        | 4.764   | 170.5       | 0.0000  | 54.7        | 0.078     | 90.9        |
| 0.9                | 0.174   | -12.1       | 4.853   | 167.6       | 0.0004  | 93.4        | 0.094     | 75.1        |
| 1                  | 0.174   | -12.9       | 4.898   | 166         | 0.0006  | 97.9        | 0.102     | 69.2        |
| 3                  | 0.143   | -38.3       | 4.955   | 129.2       | 0.0011  | 60.8        | 0.142     | 36.4        |
| 6                  | 0.047   | -54.8       | 5.047   | 76.1        | 0.0022  | 16.8        | 0.188     | -7.1        |
| 9                  | 0.090   | 16.3        | 4.943   | 23.3        | 0.0031  | -24.1       | 0.131     | -39.4       |
| 12                 | 0.149   | -19.7       | 4.853   | -28.2       | 0.0038  | -61.4       | 0.078     | -20.3       |
| 15                 | 0.113   | -63.8       | 4.864   | -80.4       | 0.0045  | -88.9       | 0.104     | -20.8       |
| 18                 | 0.012   | -23.6       | 4.809   | -133.8      | 0.0077  | -130        | 0.079     | -20.1       |
| 21                 | 0.121   | 2.3         | 4.688   | 173.3       | 0.0105  | -175.5      | 0.115     | -9.6        |
| 24                 | 0.158   | -48.6       | 4.737   | 121.3       | 0.0142  | 138         | 0.148     | -30.3       |
| 27                 | 0.077   | -106.5      | 4.870   | 67.6        | 0.0181  | 92.3        | 0.124     | -67.8       |
| 30                 | 0.064   | 22.1        | 5.006   | 11.1        | 0.0227  | 44.7        | 0.007     | -123.8      |
| 33                 | 0.145   | -40.8       | 5.047   | -46.2       | 0.0294  | -13.3       | 0.136     | 15.9        |
| 36                 | 0.120   | -120.8      | 5.129   | -102.5      | 0.0316  | -74.2       | 0.237     | -45.7       |
| 38                 | 0.068   | 137.9       | 5.254   | -143.2      | 0.0305  | -106.4      | 0.213     | -101.4      |
| 40                 | 0.1     | 20.9        | 5.559   | 174.4       | 0.0399  | -138        | 0.134     | 171.1       |
| 42                 | 0.157   | -62.7       | 5.546   | 128.8       | 0.0507  | 175.5       | 0.145     | 57.4        |
| 44                 | 0.202   | -145.9      | 5.496   | 84.8        | 0.0553  | 133.1       | 0.172     | -12.0       |
| 46.5               | 0.226   | 113.3       | 5.591   | 28.7        | 0.0648  | 87          | 0.151     | -76.8       |
| 48                 | 0.179   | 36.7        | 5.748   | -7.2        | 0.08    | 54.5        | 0.113     | -121.3      |
| 49.5               | 0.186   | -88.5       | 5.748   | -48.4       | 0.0891  | 12.4        | 0.073     | -158.8      |
| 51                 | 0.370   | 177.5       | 5.395   | -90.7       | 0.0865  | -25.4       | 0.058     | 162.3       |
| 52.5               | 0.487   | 114.6       | 4.955   | -131.5      | 0.0842  | -62.6       | 0.064     | 120.9       |
| 54                 | 0.353   | 33.0        | 4.710   | 179.7       | 0.0915  | -110.9      | 0.092     | 54.4        |
| 57                 | 0.731   | 107.5       | 2.240   | 90.0        | 0.0511  | 171.7       | 0.138     | -133.4      |
| 60                 | 0.715   | 86.7        | 1.316   | 57.4        | 0.0466  | 137.2       | 0.269     | 161         |



# Product Datasheet CGY2144UH/C2

6/12

#### **APPLICATION INFORMATION**

#### Typical application scheme

Two module layouts are proposed. Figure 1 illustrates a module with the CGY2144UH/C2 used in a photo receiver application while in figure 2 is pictured the general purpose application module. In both cases, RF accesses are built with microstrip transmission lines. Coplanar transmission lines can be used and will give the same performance. All path lengths and physical sizes of the components should be minimized.

For photo receiver applications, the photodiode capacitance  $C_{PH}$  should be lower than 75 fF. A total input inductance value of 0.3 nH is recommended while 0.4 nH should be considered as a maximum value along with a low photodiode series resistance.

For general purpose applications, all RF input and output bonding inductances should be minimized to obtain the best performance from the module. Two gold wires are recommended with maximum separation between the wires. Overall wire length should be kept less than 0.4 mm to keep lead inductance to less than 0.2 nH.

Wedge-Wedge bonding or ribbon bonding is recommended to reduce the bonding wire inductances. The use of too large inductances will lead to degradation in the gain and matching.

In figure 1 and figure 2, C1, C2 and C3 capacitors are used to improve the power supply rejection.

The chip itself has via holes connecting the front side to the backside of the chip. A good RF grounding connection should be maintained between the backside of the chip and the ground of the system. It is extremely important to use an uninterrupted ground plane. AuSn or silver conductive epoxy material can be used for die attachment.

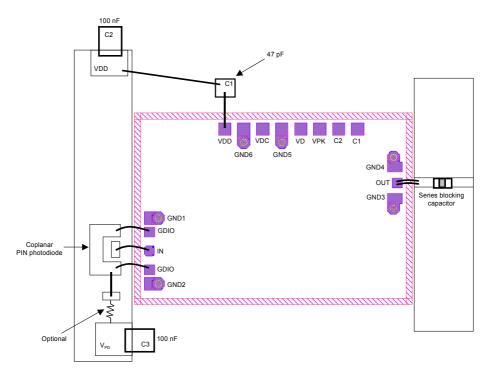



Figure 1: CGY2144UH/C2 module layout : photo receiver application



# CGY2144UH/C2

7/12

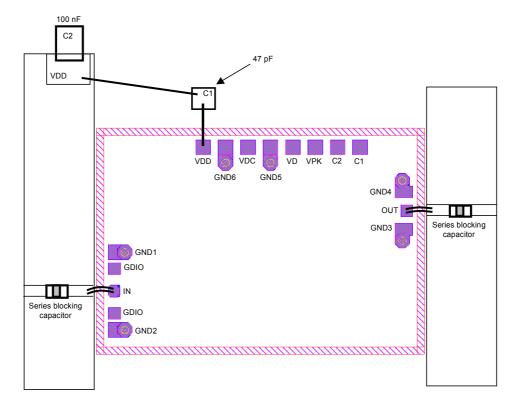



Figure 2: CGY2144UH/C2 module layout : other applications cases



#### CGY2144UH/C2

8/12

#### **OPERATING AND HANDLING INSTRUCTIONS**

The CGY2144UH/C2 is a very high performance GaAs device and as such, care must be taken at all times to avoid damage due to inappropriate handling, mounting, packaging and biasing conditions.

#### 1- Power Supply Sequence

The following power supply sequence is recommended.

#### a) Photo receiver application

V<sub>PD</sub>: Photodiode bias

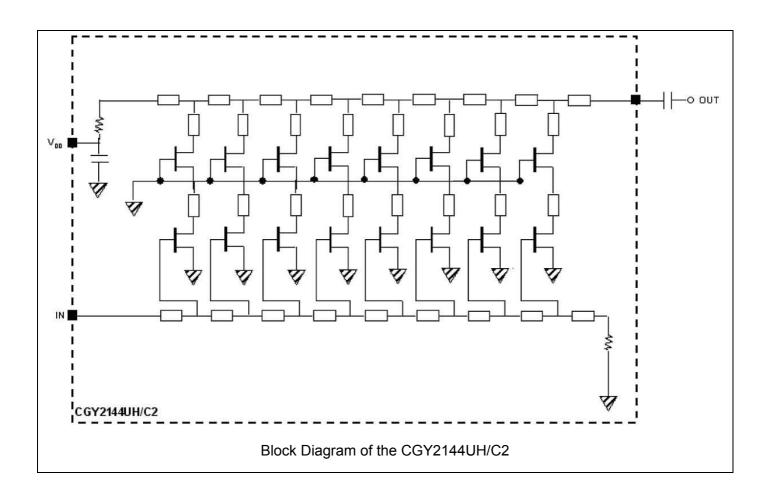
V<sub>DD</sub> : TIA bias

- i) Always turn on the photodiode bias  $V_{PIN}$  first or simultaneously with  $V_{DD}$ . Since the photodiode is direct coupled to the TIA input, powering  $V_{DD}$  first can damage the photodiode through forward bias and excess current.
- ii) Apply the input optical signal.

#### b) General purpose amplifier application

- i) Apply  $V_{DD}$  at 5.0 V
- ii) Apply the RF input signal

#### 2- Mounting and ESD handling precautions


For high performance Integrated Circuits, such as the CGY2144UH/C2, care must be taken when mounting GaAs MMICs so as to correctly mount, bond and subsequently seal the packages and hence obtain the most reliable long-term operation. The temperature, duration, material and sealing techniques compatible with GaAs MMICs and the precautions to be taken are described in OMMIC's document "OM-CI-MV/001/PG", entitled, "Precautions for III-V users".



#### CGY2144UH/C2

9/12

#### **BLOCK DIAGRAM AND PAD CONFIGURATION**





# CGY2144UH/C2

10/12

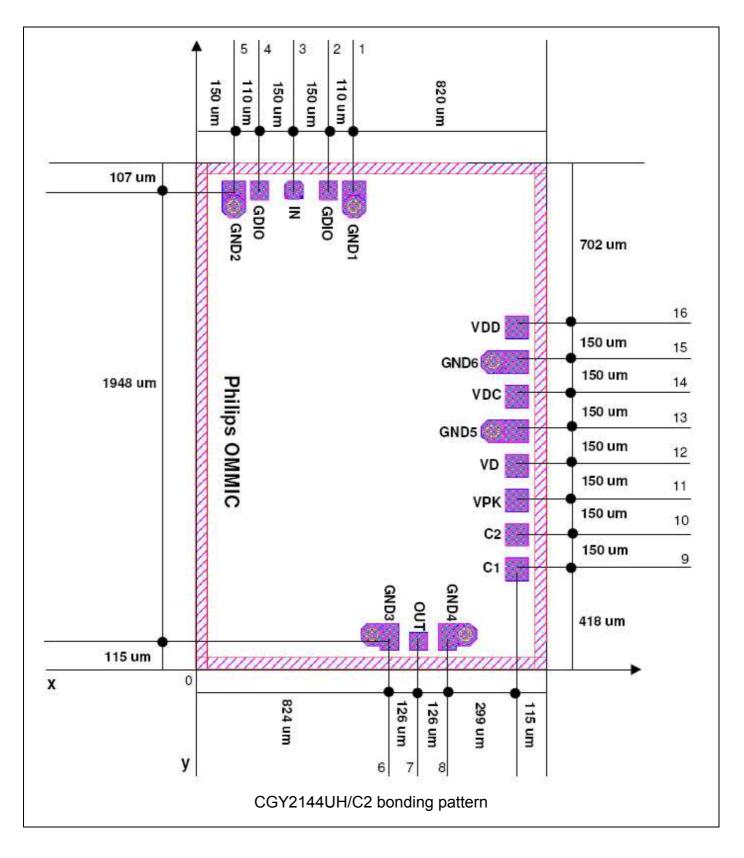
#### PAD POSITION

| SYMBOL | SYMBOL PAD COORDINATES (1)    Y X |      | INATES (1) | DESCRIPTION                                                                                                                                           |
|--------|-----------------------------------|------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| STNBUL |                                   |      | X          |                                                                                                                                                       |
| GND1   | 1                                 | 2063 | 670        | Connected to ground with on-chip via holes                                                                                                            |
| GDIO   | 2                                 | 2063 | 560        | Case 1 : amplifier used as TIA : to be connected to photodiode<br>cathode pad (see figure 1)<br>Case 2 : all others cases, do not bond (see figure 2) |
| IN     | 3                                 | 2063 | 410        | RF input                                                                                                                                              |
| GDIO   | 4                                 | 2063 | 260        | Case 1 : amplifier used as TIA : to be connected to photodiode<br>cathode pad (see figure 1)<br>Case 2 : all others cases, do not bond (see figure 2) |
| GND2   | 5                                 | 2063 | 150        | Connected to ground with on-chip via holes                                                                                                            |
| GND3   | 6                                 | 115  | 824        | Connected to ground with on-chip via holes                                                                                                            |
| OUT    | 7                                 | 115  | 950        | RF output                                                                                                                                             |
| GND4   | 8                                 | 115  | 1076       | Connected to ground with on-chip via holes                                                                                                            |
| C1     | 9                                 | 418  | 1375       | Do not bond                                                                                                                                           |
| C2     | 10                                | 568  | 1375       | Do not bond                                                                                                                                           |
| VPK    | 11                                | 718  | 1375       | Do not bond                                                                                                                                           |
| VD     | 12                                | 868  | 1375       | Do not bond                                                                                                                                           |
| GND5   | 13                                | 1018 | 1375       | Connected to ground with on-chip via holes                                                                                                            |
| VDC    | 14                                | 1168 | 1375       | DC output voltage monitor                                                                                                                             |
| GND6   | 15                                | 1318 | 1375       | Connected to ground with on-chip via holes                                                                                                            |
| VDD    | 16                                | 1468 | 1375       | Drain supply voltage, must be decoupled to ground using external capacitor (s)                                                                        |

#### NOTE

1- All x and y coordinates in µm represent the position of the centre of the pad with respect to the lower left corner of the chip layout (see the bonding pattern).

#### **MECHANICAL INFORMATION**


| PARA                   | METER                                    | VALUE                                  |
|------------------------|------------------------------------------|----------------------------------------|
| Size                   |                                          | 2170 x 1490 μm (Tolerance : +/- 15 μm) |
| Thickness              |                                          | 100 µm                                 |
| Backside material      |                                          | TiAu                                   |
|                        | C1, C2, VPK, VD, GND5,<br>VDC, GND6, VDD | 100 x 100 μm                           |
|                        | GND1, GND2                               | 100 x 87 μm                            |
| Bonding pad dimensions | GDIO                                     | 85 x 80 μm                             |
|                        | IN, OUT                                  | 80 x 80 μm                             |
|                        | GND3, GND4                               | 120 x 80 μm                            |



# CGY2144UH/C2

11/12

#### **BONDING PADS**





# Product Datasheet CGY2144UH/C2

12/12

#### DEFINITIONS

#### Limiting values definition

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

#### Application information

**ORDERING INFORMATION** 

Applications that are described herein for any of these products are for illustrative purposes only. OMMIC makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

#### DISCLAIMERS

#### Life support applications

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. OMMIC's customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify OMMIC for any damages resulting from such application.

#### **Right to make changes**

OMMIC reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. OMMIC assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

| Generic type | Package type | Version |  |
|--------------|--------------|---------|--|

| Generic type | Package type | Version | Description                                                                                                                                          |
|--------------|--------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| CGY2144UH    | Bare Die     | C2      | InGaAs Semi-conductor die. External dimensions : 2170 x 1490 $\mu m$ (Tolerance : $\pm 15$ $\mu m$ ). Die thickness: 0.1 mm. Backside material: TiAu |





#### Document History : Version 1.2, Last Update 19/04/2010